Information from Satoshi
Satoshi is a member within the Euro-MIC COST framework. This project is funded by the European Union and enables scientists to bridge knowledge and capabilities across countries and disciplines.
Summary of the experiences and competences of Satoshi
I am currently conducting research related to MIC at JAMSTEC, collaborating with researchers from various companies and universities. The research includes the following aspects:
-Exploration of novel corrosive microorganisms (for the development of diagnostic techniques).
-Dynamic analysis of microbial community structures during corrosion progression in real environmental conditions (for the development of diagnostic techniques).
-Elucidation of the corrosion mechanisms mediated by microorganisms (for the development of corrosion protection techniques).
Looking for help? Satoshi can help you with the following items
The institution I am affiliated with conducts comprehensive research on marine environments, and if project proposals are accepted, it may be possible to carry out research involving vessels in the coastal waters of Japan. For instance, if there is a need for a research facility dedicated to corrosion studies in deep-sea environments, we may be of assistance.
Contact details
Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
2-15 Natsushima-cho
Yokosuka
237-0061
Japan
wakais@jamstec.go.jp
Further details
https://www.jamstec.go.jp/sugar/e/members/personal/SatoshiWakai.html
https://scholar.google.com/citations?user=MH9ikWkAAAAJ
Representative original papers:
- C. Ho, M. Y. Emran, S. Ihara, W. Huang, S. Wakai, T. Fujikawa, W. Li, A. Okamoto (2023) Osmium-grafted Magnetic Nanobeads Improve Microbial Current Generation via Culture-free and Quick Enrichment of Electrogenic Bacteria. Chemical Engineering Journal, 466, 142936. doi: 10.1016/j.cej.2023.142936.
- Y. Miyano, S. Wakai, K. Miyanaga, T. Sunaba, H. Mizukami, N. Eno (2023) Corrosion behavior and action on microbes of copper in a freshwater MIC risk environment. Materials Transactions, 64(1), 280-286 (2023). doi: 10.2320/matertrans.MT-D2022004
- S. Ihara, S. Wakai, T. Maehara, A. Okamoto (2022) Electrochemical Enrichment and Isolation of Electrogenic Bacteria from 0.22 µm Filtrate. Microorganisms, 10(10), 2051. doi:10.3390/microorganisms10102051.
- S. Wakai, N. Eno, H. Mizukami, T. Sunaba, K. Miyanaga, Y. Miyano (2022) Microbiologically influenced corrosion of stainless steel independent of sulfate-reducing bacteria. Frontiers in Microbiology, 13, 982047. doi: 10.3389/fmicb.2022.982047
- S. Wakai, N. Eno, K. Miyanaga, H. Mizukami, T. Sunaba, Y. Miyano (2022) Dynamics of microbial communities on the corrosion behavior of steel in freshwater environment. npj Materials Degradation, 6, 45. 10.1038/s41529-022-00254-0
- S. Hirano, S. Ihara, S. Wakai, F. Ueno, T. Kitagaki, Y. Dotsuta, K. Otani, A. Ikeda, A. Okamoto (2022) Isolation of novel Methanobacteirum strain induce severe corrosion by retrieving electrons from Fe0 under freshwater environment. Microorganisms, 10, 270. doi: 10.3390/microorganisms10020270
- H. Tsurumaru, N. Ito, K. Mori, S. Wakai, T. Uchiyama, T. Iino, et al. (2018) An extracellular [NiFe] hydrogenase mediating iron corrosion is encoded in a genetically unstable genomic island in Methanococcus maripaludis. Sci. Rep., 8, 15149. doi: 10.1038/s41598-018-33541-5.
- T. Iino, K. Ito, S. Wakai, H. Tsurumaru, M. Ohkuma, S. Harayama. (2015) Iron corrosion induced by non-hydrogenotrophic nitrate-reducing Prolixibacter sp. MIC1-1. Appl. Environ. Microb., 81, 1839-1846. doi: 10.1128/AEM.03741-14.
- S. Wakai and S. Harayama (2015) Isolation of bacteria rapidly adhering on the surface of metallic iron. Mater. Technol., 30(B1), 38-43. doi: 10.1179/1753555714Y.0000000220.
- S. Wakai, K. Ito, T. Iino, Y. Tomoe, K. Mori, S. Harayama. (2014) Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility. Microb. Ecol., 68, 519-527. doi: 10.1007/s00248-014-0438-x.